Application of the fuzzy min-max neural network to fault detection and diagnosis of induction motors
In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min-max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator...
发表在: | Neural Computing and Applications |
---|---|
主要作者: | 2-s2.0-84888823881 |
格式: | 文件 |
语言: | English |
出版: |
2013
|
在线阅读: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888823881&doi=10.1007%2fs00521-012-1310-x&partnerID=40&md5=9272e6687636688d386392b7ecd74b1b |
相似书籍
-
A Unified Analysis of the Fault Tolerance Capability in Six-Phase Induction Motor Drives
由: 2-s2.0-85019422768
出版: (2017) -
A Unified Analysis of the Fault Tolerance Capability in Six-Phase Induction Motor Drives
由: Munim W.N.W.A.; Duran M.J.; Che H.S.; Bermudez M.; Gonzalez-Prieto I.; Rahim N.A.
出版: (2017) -
Effect of drive parameters on field oriented controlled induction motor drive
由: Joshi D.; Sharma A.K.; Sandhu K.S.; Musirin I.
出版: (2010) -
A FUZZY INFERENCE MODEL FOR DIAGNOSIS OF DIABETES AND LEVEL OF CARE
由: Aris T.N.M.; Bakar A.A.B.U.; Mahiddin N.; Zolkepli M.
出版: (2023) -
Analysis of handover performance in mobile WiMAX networks
由: 2-s2.0-80052641557
出版: (2011)