Application of the fuzzy min-max neural network to fault detection and diagnosis of induction motors
In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min-max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator...
الحاوية / القاعدة: | Neural Computing and Applications |
---|---|
المؤلف الرئيسي: | 2-s2.0-84888823881 |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888823881&doi=10.1007%2fs00521-012-1310-x&partnerID=40&md5=9272e6687636688d386392b7ecd74b1b |
مواد مشابهة
-
A Unified Analysis of the Fault Tolerance Capability in Six-Phase Induction Motor Drives
بواسطة: 2-s2.0-85019422768
منشور في: (2017) -
A Unified Analysis of the Fault Tolerance Capability in Six-Phase Induction Motor Drives
بواسطة: Munim W.N.W.A.; Duran M.J.; Che H.S.; Bermudez M.; Gonzalez-Prieto I.; Rahim N.A.
منشور في: (2017) -
Effect of drive parameters on field oriented controlled induction motor drive
بواسطة: Joshi D.; Sharma A.K.; Sandhu K.S.; Musirin I.
منشور في: (2010) -
A FUZZY INFERENCE MODEL FOR DIAGNOSIS OF DIABETES AND LEVEL OF CARE
بواسطة: Aris T.N.M.; Bakar A.A.B.U.; Mahiddin N.; Zolkepli M.
منشور في: (2023) -
Analysis of handover performance in mobile WiMAX networks
بواسطة: 2-s2.0-80052641557
منشور في: (2011)