Improved Xception with Local Dense Connections and Transition Layer for Facial Expression Recognition
Traditional deep convolutional neural networks are used for facial expression recognition, which makes the number of neurons and parameters huge, wastes computing resources, and even causes problems such as overfitting and network degradation. Meanwhile, single-scale expression features cannot descr...
الحاوية / القاعدة: | Proceedings of 2024 3rd International Conference on Artificial Intelligence and Intelligent Information Processing, AIIIP 2024 |
---|---|
المؤلف الرئيسي: | 2-s2.0-85219174176 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Association for Computing Machinery, Inc
2025
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85219174176&doi=10.1145%2f3707292.3707398&partnerID=40&md5=1f7308a3da4526322d8aa6a17186e516 |
مواد مشابهة
-
Implementation of Facial Expression Recognition (FER) using Convolutional Neural Network (CNN)
بواسطة: Abu Mangshor, وآخرون
منشور في: (2024) -
Online attendance system based on facial recognition with face mask detection
بواسطة: 2-s2.0-85149338399
منشور في: (2023) -
Forensic Face Sketch Recognition based on Pre-Selected Facial Regions
بواسطة: 2-s2.0-85142453639
منشور في: (2022) -
Smart Attendance in Classroom (CObot): IoT and Facial Recognition for Educational and Entrepreneurial Impact
بواسطة: Zainuddin A.A.; Nor R.M.; Handayani D.; Mohd. Tamrin M.I.; Subramaniam K.; Sadikan S.F.N.
منشور في: (2024) -
One-shot learning for facial sketch recognition using the siamese convolutional neural network
بواسطة: 2-s2.0-85107708964
منشور في: (2021)