Application and challenges of big data analytics in low-carbon indoor space design

The techniques of big data analysis hold immense potential in optimizing indoor energy consumption and enhancing comfort levels. This paper proposes a predictive method for effectively forecasting energy usage in libraries through a multi-step ahead time series-based long short-term memory-backpropa...

全面介紹

書目詳細資料
發表在:International Journal of Low-Carbon Technologies
主要作者: 2-s2.0-85217788406
格式: Article
語言:English
出版: Oxford University Press 2025
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217788406&doi=10.1093%2fijlct%2fctaf005&partnerID=40&md5=e6d5718c937a1025d5aa313203be7e1d
實物特徵
總結:The techniques of big data analysis hold immense potential in optimizing indoor energy consumption and enhancing comfort levels. This paper proposes a predictive method for effectively forecasting energy usage in libraries through a multi-step ahead time series-based long short-term memory-backpropagation model, integrated with building energy consumption sub-metering analysis technology. Experimental results indicate that the proposed multi-input multi-output model significantly outperforms traditional recursive and direct models in terms of predictive performance, adeptly capturing the intricate characteristics and temporal dependencies of energy consumption data, thereby offering a novel technological pathway and practical implications for building energy management. © 2025 The Author(s). Published by Oxford University Press.
ISSN:17481317
DOI:10.1093/ijlct/ctaf005