Automated optimal parking slot prediction using deep learning and digital twin technology aided parking space management for material science application
As vehicles on the roadside increase exponentially, drivers find it complicated to recognize parking areas. This makes it essential to identify an optimized model for resolving the vehicle-parking issues. In other words, a practical model must be implemented to identify outdoor parking slot status u...
出版年: | ALEXANDRIA ENGINEERING JOURNAL |
---|---|
主要な著者: | Lu, Ke; Zheng, Bei; Shi, Jingjing; Xu, Yaowen |
フォーマット: | 論文 |
言語: | English |
出版事項: |
ELSEVIER
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001447049000001 |
類似資料
-
Automated optimal parking slot prediction using deep learning and digital twin technology aided parking space management for material science application
著者:: 2-s2.0-86000519794
出版事項: (2025) -
QUANTIFYING THE COOLING EFFECT FOR URBAN PARK MICROCLIMATE: AN ANALYSIS OF PELTOPHORUM PTEROCARPUM SPECIES IN KLCC PARK, KUALA LUMPUR, MALAYSIA
著者:: 2-s2.0-85210959062
出版事項: (2024) -
Machine learning and IoT for smart parking models and approaches
著者:: 2-s2.0-85175386286
出版事項: (2023) -
Prospects of contemplative urban park from expert perspectives
著者:: 2-s2.0-85120501846
出版事項: (2021) -
Digital Twins of Robotic Systems: Increasing Capability for Industrial Applications
著者:: 2-s2.0-85151252320
出版事項: (2023)