Detecting Chinese Sexism Text in Social Media Using Hybrid Deep Learning Model with Sarcasm Masking
Sexism content is prevalent in social media, which seriously affects the online environment and occasionally leads to offline disputes. For this reason, many scholars have researched how to automatically detect sexist content in social media. However, the presence of sarcasm complicates this task. T...
出版年: | INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS |
---|---|
主要な著者: | Wang, Lei; Abdullah, Nur Atiqah Sia; Aris, Syaripah Ruzaini Syed |
フォーマット: | 論文 |
言語: | English |
出版事項: |
SCIENCE & INFORMATION SAI ORGANIZATION LTD
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441789600001 |
類似資料
-
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
著者:: Zhang J.; Maskat R.
出版事項: (2024) -
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
著者:: 2-s2.0-85216922302
出版事項: (2024) -
A Study of Comfort Properties Between Various Brand of Face Masks for Malaysian Consumers
著者:: Zainuddin N.; Tulos N.; Osman S.; Zakaria M.H.; Aris A.
出版事項: (2024) -
Social Media Usage and Interactions: An In-Depth Interview on BERSIH 2.0 Social Media Visual Framing
著者:: Fathir M.F.M.; Lokman A.M.; Kadir S.A.; Sualman I.
出版事項: (2023) -
Feasibility of text visualization in text steganalysis
著者:: Ab. Rauf R.H.; Jamal N.
出版事項: (2014)