Detecting Chinese Sexism Text in Social Media Using Hybrid Deep Learning Model with Sarcasm Masking
Sexism content is prevalent in social media, which seriously affects the online environment and occasionally leads to offline disputes. For this reason, many scholars have researched how to automatically detect sexist content in social media. However, the presence of sarcasm complicates this task. T...
الحاوية / القاعدة: | INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS |
---|---|
المؤلفون الرئيسيون: | Wang, Lei; Abdullah, Nur Atiqah Sia; Aris, Syaripah Ruzaini Syed |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
SCIENCE & INFORMATION SAI ORGANIZATION LTD
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001441789600001 |
مواد مشابهة
-
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
بواسطة: Zhang J.; Maskat R.
منشور في: (2024) -
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
بواسطة: 2-s2.0-85216922302
منشور في: (2024) -
A Study of Comfort Properties Between Various Brand of Face Masks for Malaysian Consumers
بواسطة: Zainuddin N.; Tulos N.; Osman S.; Zakaria M.H.; Aris A.
منشور في: (2024) -
Social Media Usage and Interactions: An In-Depth Interview on BERSIH 2.0 Social Media Visual Framing
بواسطة: Fathir M.F.M.; Lokman A.M.; Kadir S.A.; Sualman I.
منشور في: (2023) -
Feasibility of text visualization in text steganalysis
بواسطة: Ab. Rauf R.H.; Jamal N.
منشور في: (2014)