Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
Class imbalance is one of the most significant difficulties in modern machine learning. This is because of the inherent bias of standard classifiers toward favoring majority instances while often ignoring minority instances. Interpolation-based oversampling techniques are among the most popular solu...
出版年: | JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES |
---|---|
主要な著者: | Wang, Yujiang; Rosli, Marshima Mohd; Musa, Norzilah; Wang, Lei |
フォーマット: | 論文 |
言語: | English |
出版事項: |
SPRINGERNATURE
2024
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001410486900001 |
類似資料
-
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
著者:: Wang Y.; Rosli M.M.; Musa N.; Wang L.
出版事項: (2024) -
CL-SR: Boosting Imbalanced Image Classification with Contrastive Learning and Synthetic Minority Oversampling Technique Based on Rough Set Theory Integration
著者:: Gao X.; Jamil N.; Ramli M.I.
出版事項: (2024) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
著者:: Azmi, 等
出版事項: (2025) -
Consensus clustering and fuzzy classification for breast cancer prognosis
著者:: Garibaldi J.M.; Soria D.; Rasmani K.A.
出版事項: (2010) -
Feature selection embedded cluster distribution position for characteristic analysis of multi-dimension poverty-stricken households in China
著者:: Liu H.; Liu Y.; Zhang R.; Liu D.; Zhang Z.
出版事項: (2021)