Knowledge-Grounded Attention-Based Neural Machine Translation Model
Neural machine translation (NMT) model processes sentences in isolation and ignores additional contextual or side information beyond sentences. The input text alone often provides limited knowledge to generate contextually correct and meaningful translation. Relying solely on the input text could yi...
出版年: | APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING |
---|---|
主要な著者: | Israr, Huma; Khan, Safdar Abbas; Tahir, Muhammad Ali; Shahzad, Muhammad Khuram; Ahmad, Muneer; Zain, Jasni Mohamad |
フォーマット: | 論文 |
言語: | English |
出版事項: |
WILEY
2025
|
主題: | |
オンライン・アクセス: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001397785100001 |
類似資料
-
Language Instructors’ Beliefs and Coping Mechanisms on the Use of Machine Translation: Cautions and Concerns
著者:: Lew Y.L.; Kaur N.; Hamid H.A.; Hoe F.T.
出版事項: (2025) -
Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features
著者:: Khan, 等
出版事項: (2024) -
A Systematic Review of Translator Translation Styles: Trends and Development from 2013 to 2023
著者:: Yang J.; Husin N.
出版事項: (2024) -
Enhancing Pretrained Multilingual Machine Translation Model with Code-Switching: A Study on Chinese, English and Malay Language
著者:: Liu H.; Seman N.
出版事項: (2025) -
LoRa-Based Ground Sensor Terminal for L-Band Satellite IoT Applications
著者:: Omar, 等
出版事項: (2024)