Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features
This study evaluates and differentiates five advanced machine learning models-LSTM, GRU, CNN-LSTM, Random Forest, and SVR-aimed at precisely estimating solar and wind power generation to enhance renewable energy forecasting. LSTM achieved a remarkable Mean Squared Error (MSE) of 0.010 and R2 score o...
发表在: | DISCOVER SUSTAINABILITY |
---|---|
Main Authors: | Khan, Sunawar; Mazhar, Tehseen; Khan, Muhammad Amir; Shahzad, Tariq; Ahmad, Wasim; Bibi, Afsha; Saeed, Mamoon M.; Hamam, Habib |
格式: | 文件 |
语言: | English |
出版: |
SPRINGERNATURE
2024
|
主题: | |
在线阅读: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001386434000001 |
相似书籍
-
Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features
由: Khan S.; Mazhar T.; Khan M.A.; Shahzad T.; Ahmad W.; Bibi A.; Saeed M.M.; Hamam H.
出版: (2024) -
Harnessing AI for sustainable higher education: ethical considerations, operational efficiency, and future directions
由: Khan, et al.
出版: (2025) -
Future of sustainable farming: exploring opportunities and overcoming barriers in drone-IoT integration
由: Khan, et al.
出版: (2024) -
An Advanced Deep Learning Framework for Skin Cancer Classification
由: Khan, et al.
出版: (2025) -
Generative AI, IoT, and blockchain in healthcare: application, issues, and solutions
由: Mazhar T.; khan S.; Shahzad T.; khan M.A.; Saeed M.M.; Awotunde J.B.; Hamam H.
出版: (2025)