Resource-Efficient 64-bit Karatsuba Multiplier using LUTs and DSP slices

Modem Field Programmable Gate Array (FPGA) is now equipped with Digital Signal Processing (DSP) block for faster computation. This feature can be exploited to speed-up the multiplication process which is widely needed during encryption. However, the operand size of DSP multipliers are asymmetric, 24...

Full description

Bibliographic Details
Published in:2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024
Main Authors: Hashim, Shakirah; Mansor, Nur Farraliza
Format: Proceedings Paper
Language:English
Published: IEEE 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283898700003
Description
Summary:Modem Field Programmable Gate Array (FPGA) is now equipped with Digital Signal Processing (DSP) block for faster computation. This feature can be exploited to speed-up the multiplication process which is widely needed during encryption. However, the operand size of DSP multipliers are asymmetric, 24 x 17 bits, thus complicates the multiplication process. As DSP has high-throughput function, it must be optimally used to avoid resource waste. Thus, 64-bit Karatsuba multiplier is proposed in this paper to exploit the DSP advancement, based on two optimizations: operand decomposition and operand arrangement. Both optimizations are tailored to the DSP asymmetric multiplier architecture. The proposed design is implemented on Kintex 7. We only utilized 8 DSP slices and several slices of LUTs resource, smaller than non-standard tiling Karatsuba. In fact, we achieved higher DSP efficiency (97.6%) as each DSP slice is optimally utilized.
ISSN:2836-4864
DOI:10.1109/ISCAIE61308.2024.10576219