Microheater Comparative Study of S-Shape, Serpentine, and Dual C Configurations for Microfluidic Applications

This study investigates the performance of microheaters, focusing on three different configurations: s-shape, serpentine, and dual C shapes for microfluidic applications. Each configuration is characterized by electrical, thermal, and structural simulations via the ANSYS tool. The electrical analysi...

詳細記述

書誌詳細
出版年:2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024
主要な著者: Nasarudin, Wan Najmi Nuqman Wan; Husaini, Yusnira; Yaakub, Tuan Norjihan Tuan
フォーマット: Proceedings Paper
言語:English
出版事項: IEEE 2024
主題:
オンライン・アクセス:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001283898700002
その他の書誌記述
要約:This study investigates the performance of microheaters, focusing on three different configurations: s-shape, serpentine, and dual C shapes for microfluidic applications. Each configuration is characterized by electrical, thermal, and structural simulations via the ANSYS tool. The electrical analysis reveals distinct variations in joule heat generation, while steady-state thermal analysis provides insights into temperature distribution and heat dissipation profiles. Static structural analysis elucidates variations in deformation, stress, and strain energy accumulation, offering critical insights into structural integrity and stability. By using the Taguchi Method, the main effect plots show how electrical parameters affect thermal and structural behavior. Higher current levels are linked to more deformation and stress. The S shape emerges as the most promising design, demonstrating consistent thermal and structural responses and lower levels of deformation and stress.
ISSN:2836-4864
DOI:10.1109/ISCAIE61308.2024.10576212