Application of the fuzzy min-max neural network to fault detection and diagnosis of induction motors
In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min-max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator...
出版年: | Neural Computing and Applications |
---|---|
第一著者: | 2-s2.0-84888823881 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
2013
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84888823881&doi=10.1007%2fs00521-012-1310-x&partnerID=40&md5=9272e6687636688d386392b7ecd74b1b |
類似資料
-
A Unified Analysis of the Fault Tolerance Capability in Six-Phase Induction Motor Drives
著者:: 2-s2.0-85019422768
出版事項: (2017) -
A Unified Analysis of the Fault Tolerance Capability in Six-Phase Induction Motor Drives
著者:: Munim W.N.W.A.; Duran M.J.; Che H.S.; Bermudez M.; Gonzalez-Prieto I.; Rahim N.A.
出版事項: (2017) -
Effect of drive parameters on field oriented controlled induction motor drive
著者:: Joshi D.; Sharma A.K.; Sandhu K.S.; Musirin I.
出版事項: (2010) -
A FUZZY INFERENCE MODEL FOR DIAGNOSIS OF DIABETES AND LEVEL OF CARE
著者:: Aris T.N.M.; Bakar A.A.B.U.; Mahiddin N.; Zolkepli M.
出版事項: (2023) -
Analysis of handover performance in mobile WiMAX networks
著者:: 2-s2.0-80052641557
出版事項: (2011)