The effect of network depth in neural network for human gait cycle prediction
Artificial neural networks were implemented satisfactorily to assess gait events from various walking data. This research is to study the suitable network depth in neural network technique for developing human gait cycle prediction model using artificial neural network. Gait dataset is retrieved fro...
出版年: | AIP Conference Proceedings |
---|---|
第一著者: | 2-s2.0-85166760836 |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
American Institute of Physics Inc.
2023
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85166760836&doi=10.1063%2f5.0117708&partnerID=40&md5=184a297c9ec3bb6eea26c2f3d7094c0d |
類似資料
-
Systematic Literature Review: Recognition of Human Gait Cycle Using Machine Learning Approach
著者:: 2-s2.0-85136505986
出版事項: (2022) -
Predicting fraudulent financial reporting using artificial neural network
著者:: 2-s2.0-85019490600
出版事項: (2017) -
A neural network students' performance prediction model (NNSPPM)
著者:: 2-s2.0-84894188408
出版事項: (2013) -
Flood prediction using NARX neural network and EKF prediction technique: A comparative study
著者:: 2-s2.0-84891096883
出版事項: (2013) -
Artificial Neural Network-Salp-Swarm Algorithm for Stock Price Prediction
著者:: Mustaffa Z.; Sulaiman M.H.; Aziz A.A.
出版事項: (2024)