An impact of time and item influencer in collaborative filtering recommendations using graph-based model
Recommender Systems deal with the issue of overloading information by retrieving the most relevant sources in the wide range of web services. They help users by predicting their interests in many domains like e-government, social networks, e-commerce and entertainment. Collaborative Filtering (CF) i...
出版年: | Information Processing and Management |
---|---|
第一著者: | 2-s2.0-85059583017 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier Ltd
2019
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059583017&doi=10.1016%2fj.ipm.2018.12.007&partnerID=40&md5=dce8d529651821a14ef99b43025efdd0 |
類似資料
-
Homestay Recommender System Using Content-Based Filtering and K-Means Algorithm
著者:: Azman N.A.B.N.; Daud N.M.N.; Sabri N.M.; Abu Bakar N.A.A.
出版事項: (2024) -
Integrating Business Intelligence and Recommendation Marketplace System for Hawker Using Content Based Filtering
著者:: 2-s2.0-85176611567
出版事項: (2023) -
ReciPicker: Recipe recommendation using hybrid filtering for reducing food waste
著者:: Mohd Rosli M.; Abdullah N.A.S.; Ruzaini A.
出版事項: (2019) -
Shunt Active Power Filter Based on Savitzky-Golay Filter: Pragmatic Modelling and Performance Validation
著者:: 2-s2.0-85151526589
出版事項: (2023) -
Graph Based Method for Lathe Machining Part Model
著者:: 2-s2.0-85098853540
出版事項: (2020)