Application of Geometric Features on Lung Lesion and Non-Lesion Segmentation
Lung cancer is the most prevalent cancer globally, with 1.6 million deaths annually. This is very crucial to develop a new CAD system that will aid medical experts in treating patients and increase the survival rate. Segmenting lung lesions is one of the most important tasks in a CAD system for lung...
الحاوية / القاعدة: | Proceedings - 13th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2023 |
---|---|
المؤلف الرئيسي: | 2-s2.0-85172902165 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Institute of Electrical and Electronics Engineers Inc.
2023
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85172902165&doi=10.1109%2fICCSCE58721.2023.10237160&partnerID=40&md5=5137268060eb2238572d7489835757c2 |
مواد مشابهة
-
GEOMETRICAL FEATURE OF LUNG LESION IDENTIFICATION USING COMPUTED TOMOGRAPHY SCAN IMAGES
بواسطة: 2-s2.0-85150055152
منشور في: (2023) -
Image segmentation and feature extraction method for lung lesion detection in computed tomography images
بواسطة: 2-s2.0-85172192821
منشور في: (2023) -
Lung lesion identification using geometrical feature and optical flow method from computed tomography scan images
بواسطة: 2-s2.0-85189779867
منشور في: (2023) -
Identification of Lung Lesions in Computed Tomography Scan Images using Machine Learning Techniques
بواسطة: 2-s2.0-85207057349
منشور في: (2024) -
Enhancing lung lesion localization in CT-scans: a novel approach using FE_CXY and statistical analysis
بواسطة: 2-s2.0-85191598568
منشور في: (2024)