Automated Detection of Dyslexia Symptom Based on Handwriting Image for Primary School Children
This paper presents an automated detection system to identify the present of dyslexia symptoms in primary school children based on their handwriting images. The proposed automated detection system is developed by using pattern recognition technique. Based on their handwriting images, the pattern rec...
الحاوية / القاعدة: | Procedia Computer Science |
---|---|
المؤلف الرئيسي: | 2-s2.0-85081159240 |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Elsevier B.V.
2019
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081159240&doi=10.1016%2fj.procs.2019.12.127&partnerID=40&md5=d2ee1dce6d929e87d8f5cef3ddd59223 |
مواد مشابهة
-
Handwriting Image Classification for Automated Diagnosis of Learning Disabilities: A Review on Deep Learning Models and Future Directions
بواسطة: Sukiman S.A.; Husin N.A.; Hamdan H.; Murad M.A.A.
منشور في: (2024) -
MathLexic: An assistive multimedia mathematical learning aid for dyslexia children
بواسطة: 2-s2.0-84883096645
منشور في: (2013) -
Bijak Membaca - Applying Phonic Reading Technique and Multisensory Approach with interactive multimedia for dyslexia children
بواسطة: 2-s2.0-84877669564
منشور في: (2012) -
Arabic Handwriting Classification using Deep Transfer Learning Techniques
بواسطة: 2-s2.0-85125867421
منشور في: (2022) -
Characteristics of ultrafine particle sources and deposition rates in primary school classrooms
بواسطة: 2-s2.0-84900803036
منشور في: (2014)