Comparison of Multiple Regression and Model Averaging Model-Building Approach for Missing Data with Multiple Imputation
Model construction is of significant importance for the extraction of information from datasets and the prediction of responses based on predictor variables. The objective of this study is to compare the Multiple Regression (MR) and model averaging approaches in the context of missing data and to va...
الحاوية / القاعدة: | Engineering, Technology and Applied Science Research |
---|---|
المؤلف الرئيسي: | 2-s2.0-85211465762 |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Dr D. Pylarinos
2024
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211465762&doi=10.48084%2fetasr.8909&partnerID=40&md5=5d6d424469343797eb04c458990d1c96 |
مواد مشابهة
-
Missing River Discharge Data Imputation Approach using Artificial Neural Network
بواسطة: 2-s2.0-85101170010
منشور في: (2015) -
Multiple Linear Regression Model for Total Bed Material Load Prediction
بواسطة: 2-s2.0-33645829512
منشور في: (2006) -
Real-Time Data Forecasting On Missing Energy Data Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model
بواسطة: Fariz K.N.M.K.; Latip M.F.A.; Zaini N.
منشور في: (2024) -
Performance of multiple linear regression model for long-term PM 10 concentration prediction based on gaseous and meteorological parameters
بواسطة: 2-s2.0-84866261034
منشور في: (2012) -
Driving Behavior Recognition using Multiple Deep Learning Models
بواسطة: 2-s2.0-85132718900
منشور في: (2022)