Comparison of Multiple Regression and Model Averaging Model-Building Approach for Missing Data with Multiple Imputation
Model construction is of significant importance for the extraction of information from datasets and the prediction of responses based on predictor variables. The objective of this study is to compare the Multiple Regression (MR) and model averaging approaches in the context of missing data and to va...
出版年: | Engineering, Technology and Applied Science Research |
---|---|
第一著者: | 2-s2.0-85211465762 |
フォーマット: | 論文 |
言語: | English |
出版事項: |
Dr D. Pylarinos
2024
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85211465762&doi=10.48084%2fetasr.8909&partnerID=40&md5=5d6d424469343797eb04c458990d1c96 |
類似資料
-
Missing River Discharge Data Imputation Approach using Artificial Neural Network
著者:: 2-s2.0-85101170010
出版事項: (2015) -
Multiple Linear Regression Model for Total Bed Material Load Prediction
著者:: 2-s2.0-33645829512
出版事項: (2006) -
Real-Time Data Forecasting On Missing Energy Data Using Seasonal Autoregressive Integrated Moving Average (SARIMA) Model
著者:: Fariz K.N.M.K.; Latip M.F.A.; Zaini N.
出版事項: (2024) -
Performance of multiple linear regression model for long-term PM 10 concentration prediction based on gaseous and meteorological parameters
著者:: 2-s2.0-84866261034
出版事項: (2012) -
Driving Behavior Recognition using Multiple Deep Learning Models
著者:: 2-s2.0-85132718900
出版事項: (2022)