Hyperparameter Analysis-based Long-Short Term Memory (LSTM) for Power Quality Disturbances Classification
Power quality disturbances are a critical issue in electrical power systems, as they can lead to more severe problems with electrical machines or equipment, resulting in significant losses. While such disturbances are rare, using binary classification to differentiate between normal and abnormal pow...
相似書籍
-
Power Quality Disturbances Classification Analysis Using EfficientNet Architecture
由: Zabidi, et al.
出版: (2024) -
Lung diseases identification using hybrid transfer learning and bidirectional long short-term memory
由: Cahyani D.E.; Oktoviana L.T.; Yasin M.; Wahyuningsih S.; Dionixius; Maulidaningsih R.; Setumin S.
出版: (2025) -
Topology Approach for Crude Oil Price Forecasting of Particle Swarm Optimization and Long Short-Term Memory
由: Yusoff M.; Ehsan D.; Sharif M.Y.; Sallehud-din M.T.M.
出版: (2024) -
Anomaly detection using K-Means and long-short term memory for predictive maintenance of large-scale solar (LSS) photovoltaic plant
由: 2-s2.0-85173448238
出版: (2023) -
Optimal feature selection using modified cuckoo search for classification of power quality disturbances
由: Mehedi I.M.; Ahmadipour M.; Salam Z.; Ridha H.M.; Bassi H.; Rawa M.J.H.; Ajour M.; Abusorrah A.; Abdullah M.P.
出版: (2021)