Enhancing Cognitive Frailty Prediction Accuracy Using Conditional Generative Adversarial Networks(CGAN)
Class imbalance is a prevalent issue in real-life scenarios, especially in medical datasets where instances of normal health conditions far outnumber those with health conditions, for example, Cognitive Frailty. This imbalance can lead to predictive models biased towards the majority class, thus dim...
出版年: | ACM International Conference Proceeding Series |
---|---|
第一著者: | Ibrahim F.N.A.; Badruddin N.; Ramasamy K. |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
Association for Computing Machinery
2024
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85215947639&doi=10.1145%2f3702138.3702151&partnerID=40&md5=7a185588287fc31fdccf1004508663f7 |
類似資料
-
Performance evaluation of generative adversarial networks for generating mugshot images from text description
著者:: 2-s2.0-85186246281
出版事項: (2024) -
Medication self-management among older adults with cognitive frailty
著者:: 2-s2.0-85177031295
出版事項: (2024) -
Enhancing Solar Energy Forecasting Accuracy Using LSTM Networks for Global Horizontal Irradiance
著者:: Mazmee A.N.A.; Zaini N.; Latip M.F.A.
出版事項: (2024) -
Bibliometric Insights into Research on Frailty and Falls
著者:: 2-s2.0-85219403877
出版事項: (2024) -
Enhancing myocardial infarction diagnostic accuracy: Integrating machine learning, optical flow algorithms, and temporal convolutional networks in echocardiography
著者:: Kasim, 等
出版事項: (2024)