Enhancing Cognitive Frailty Prediction Accuracy Using Conditional Generative Adversarial Networks(CGAN)
Class imbalance is a prevalent issue in real-life scenarios, especially in medical datasets where instances of normal health conditions far outnumber those with health conditions, for example, Cognitive Frailty. This imbalance can lead to predictive models biased towards the majority class, thus dim...
الحاوية / القاعدة: | ACM International Conference Proceeding Series |
---|---|
المؤلف الرئيسي: | Ibrahim F.N.A.; Badruddin N.; Ramasamy K. |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
Association for Computing Machinery
2024
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85215947639&doi=10.1145%2f3702138.3702151&partnerID=40&md5=7a185588287fc31fdccf1004508663f7 |
مواد مشابهة
-
Performance evaluation of generative adversarial networks for generating mugshot images from text description
بواسطة: 2-s2.0-85186246281
منشور في: (2024) -
Medication self-management among older adults with cognitive frailty
بواسطة: 2-s2.0-85177031295
منشور في: (2024) -
Enhancing Solar Energy Forecasting Accuracy Using LSTM Networks for Global Horizontal Irradiance
بواسطة: Mazmee A.N.A.; Zaini N.; Latip M.F.A.
منشور في: (2024) -
Bibliometric Insights into Research on Frailty and Falls
بواسطة: 2-s2.0-85219403877
منشور في: (2024) -
Enhancing myocardial infarction diagnostic accuracy: Integrating machine learning, optical flow algorithms, and temporal convolutional networks in echocardiography
بواسطة: Kasim, وآخرون
منشور في: (2024)