A Comparative Analysis of Combination of CNN-Based Models with Ensemble Learning on Imbalanced Data
This study investigates the usefulness of the Synthetic Minority Oversampling Technique (SMOTE) in conjunction with convolutional neural network (CNN) models, which include both single and ensemble classifiers. The objective of this research is to handle the difficulty of multi-class imbalanced imag...
الحاوية / القاعدة: | International Journal on Informatics Visualization |
---|---|
المؤلف الرئيسي: | Gao X.; Jamil N.; Ramli M.I.; Ariffin S.M.Z.S.Z. |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Politeknik Negeri Padang
2024
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189610439&doi=10.62527%2fjoiv.8.1.2194&partnerID=40&md5=fde1ce93c2d09526862bd2a73f948536 |
مواد مشابهة
-
Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data
بواسطة: 2-s2.0-85142097924
منشور في: (2023) -
CL-SR: Boosting Imbalanced Image Classification with Contrastive Learning and Synthetic Minority Oversampling Technique Based on Rough Set Theory Integration
بواسطة: Gao X.; Jamil N.; Ramli M.I.
منشور في: (2024) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
بواسطة: Azmi, وآخرون
منشور في: (2025) -
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
بواسطة: Wang Y.; Rosli M.M.; Musa N.; Wang L.
منشور في: (2024) -
Breast Cancer Classification through Meta-Learning Ensemble Technique Using Convolution Neural Networks
بواسطة: 2-s2.0-85164711241
منشور في: (2023)