On local antimagic chromatic number of lexicographic product graphs
Consider a simple connected graph G= (V, E) of order p and size q. For a bijection f: E→ { 1 , 2 , … , q} , let f+(u) = ∑ e∈E(u)f(e) where E(u) is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u) ≠ f+(v). The minimum...
Published in: | Acta Mathematica Hungarica |
---|---|
Main Author: | Lau G.-C.; Shiu W.C. |
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media B.V.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149531589&doi=10.1007%2fs10474-023-01305-x&partnerID=40&md5=6ea3daa69d7d910baecb086e8da43164 |
Similar Items
-
On join product and local antimagic chromatic number of regular graphs
by: Lau G.-C.; Shiu W.C.
Published: (2023) -
On local antimagic chromatic numbers of circulant graphs join with null graphs or cycles
by: Lau G.C.; Premalatha K.; Shiu W.C.; Nalliah M.
Published: (2023) -
On local antimagic chromatic number of cycle-related join graphs II
by: Lau G.-C.; Premalatha K.; Arumugam S.; Shiu W.C.
Published: (2024) -
On Local Antimagic Chromatic Number of Graphs with Cut-vertices
by: Lau G.-C.; Shiu W.-C.; Ng H.-K.
Published: (2024) -
On Local Antimagic Chromatic Number of Cycle-Related Join Graphs
by: Lau G.-C.; Shiu W.-C.; Ng H.-K.
Published: (2021)