On local antimagic chromatic number of lexicographic product graphs
Consider a simple connected graph G= (V, E) of order p and size q. For a bijection f: E→ { 1 , 2 , … , q} , let f+(u) = ∑ e∈E(u)f(e) where E(u) is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u) ≠ f+(v). The minimum...
Published in: | Acta Mathematica Hungarica |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Springer Science and Business Media B.V.
2023
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149531589&doi=10.1007%2fs10474-023-01305-x&partnerID=40&md5=6ea3daa69d7d910baecb086e8da43164 |