Enhancing big data feature selection using a hybrid correlation-based feature selection
This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search (BFS), and dominance-based rough set approach (DRSA) methods. This study aims...
類似資料
-
Hybrid embedded and filter feature selection methods in big-dimension mammary cancer and prostatic cancer data
著者:: 2-s2.0-85200038464
出版事項: (2024) -
Hybrid filtering methods for feature selection in high-dimensional cancer data
著者:: 2-s2.0-85172876734
出版事項: (2023) -
Feature selection for online streaming high-dimensional data: A state-of-the-art review
著者:: 2-s2.0-85135701708
出版事項: (2022) -
Improving Air Pollution Prediction Modelling Using Wrapper Feature Selection
著者:: 2-s2.0-85138699784
出版事項: (2022) -
Grasshopper Optimization Algorithm with Crossover Operators for Feature Selection and Solving Engineering Problems
著者:: 2-s2.0-85125331226
出版事項: (2022)