Strategy to enhance catalytic activity and stability of sol–gel oxidoreductases

Oxidoreductases are widely recognized for their capability to degrade phenolic pollutants and versatile. However, the lack of enzyme stability makes this technique unrealistic for industrial applications. In order to enhance their catalytic activity, stability and reusability, oxidoreductases namely...

全面介绍

书目详细资料
发表在:Journal of Sol-Gel Science and Technology
主要作者: Mohidem N.A.; Bin Mat H.; Mohamad M.; Hamzah F.; Rashid M.U.
格式: 文件
语言:English
出版: Springer 2021
在线阅读:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85103535613&doi=10.1007%2fs10971-021-05522-0&partnerID=40&md5=c4a078b5bea7940337f5c856393b07ec
实物特征
总结:Oxidoreductases are widely recognized for their capability to degrade phenolic pollutants and versatile. However, the lack of enzyme stability makes this technique unrealistic for industrial applications. In order to enhance their catalytic activity, stability and reusability, oxidoreductases namely laccases and peroxidases were entrapped in sol–gel silica and their catalytic activities were measured by an enzymatic assay using 2,6-dimethoxyphenol and guaiacol as substrates, respectively. The sol–gel silica matrices acted as a polymeric framework around the enzyme is a promising tool for improving enzyme stability. After entrapment, the catalytic activity and stability of sol–gel laccase and peroxidase toward pH, temperature and storage duration remarkably enhanced. [Figure not available: see fulltext.] © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
ISSN:9280707
DOI:10.1007/s10971-021-05522-0