Estimating feature extraction changes of Berkelah Forest, Malaysia from multisensor remote sensing data using and object-based technique
The study involves an object-based segmentation method to extract feature changes in tropical rainforest cover using Landsat image and airborne LiDAR (ALS). Disturbance event that are represents the changes are examined by the classification of multisensor data; that is a highly accurate ALS with di...
類似資料
-
Automated Ground Truth Annotation for Forest and Non-Forest Classification in Satellite Remote Sensing Images
著者:: 2-s2.0-85176549266
出版事項: (2023) -
Statistical Analysis for Forest Fire Factors Using Geography Information System (GIS) and Remote Sensing Imagery
著者:: 2-s2.0-85195303139
出版事項: (2025) -
Assessing rainfall prediction models: Exploring the advantages of machine learning and remote sensing approaches
著者:: Latif S.D.; Alyaa Binti Hazrin N.; Hoon Koo C.; Lin Ng J.; Chaplot B.; Feng Huang Y.; El-Shafie A.; Najah Ahmed A.
出版事項: (2023) -
LANDSLIDE SUSCEPTIBILITY USING REMOTE SENSING AND GIS: A CASE STUDY IN HULU LANGAT, SELANGOR, MALAYSIA
著者:: Syams M.N.E.; Ibrahim I.; Latif N.A.; Asmawi M.Z.; Salleh S.A.
出版事項: (2025) -
Review of environmental monitoring in freshwater lakes using geospatial techniques (remote sensing and GIS)
著者:: Kamaruzzaman, 等
出版事項: (2025)