An analysis on performance of different type classifiers in handling big data sets
Data analysis is one of the most important tasks in the decision making process. It helps decision maker to solve many problems such as classification and regression. However, wrong choice of method will produce inefficiency solution especially when dealing with big data sets. Besides, lack of infor...
出版年: | Frontiers in Artificial Intelligence and Applications |
---|---|
第一著者: | Mohamad M.; Selamat A. |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
IOS Press BV
2019
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082075517&doi=10.3233%2fFAIA190057&partnerID=40&md5=467a692fad8c4642ac4725b87309e519 |
類似資料
-
Enhancing big data feature selection using a hybrid correlation-based feature selection
著者:: Mohamad M.; Selamat A.; Krejcar O.; Crespo R.G.; Herrera-Viedma E.; Fujita H.
出版事項: (2021) -
The state of the art and taxonomy of big data analytics: view from new big data framework
著者:: 2-s2.0-85060981723
出版事項: (2020) -
Handling imbalanced dataset using SVM and k-NN approach
著者:: Wah Y.B.; Rahman H.A.A.; He H.; Bulgiba A.
出版事項: (2016) -
Big Data Analysis on Emotional Drivers and Strategies for Slow Fashion Consumption
著者:: Suxia, 等
出版事項: (2025) -
The impact of big data on university libraries in Bangladesh
著者:: 2-s2.0-85210089043
出版事項: (2024)