Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells
Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear...
Published in: | Scientific Reports |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Nature Research
2019
|
Online Access: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077165762&doi=10.1038%2fs41598-019-56106-6&partnerID=40&md5=91025b95a9f9d5b0c5714a3795ec9692 |
id |
2-s2.0-85077165762 |
---|---|
spelling |
2-s2.0-85077165762 Tay Y.L.; Amanah A.; Adenan M.I.; Wahab H.A.; Tan M.L. Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells 2019 Scientific Reports 9 1 10.1038/s41598-019-56106-6 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077165762&doi=10.1038%2fs41598-019-56106-6&partnerID=40&md5=91025b95a9f9d5b0c5714a3795ec9692 Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking. © 2019, The Author(s). Nature Research 20452322 English Article All Open Access; Gold Open Access; Green Open Access |
author |
Tay Y.L.; Amanah A.; Adenan M.I.; Wahab H.A.; Tan M.L. |
spellingShingle |
Tay Y.L.; Amanah A.; Adenan M.I.; Wahab H.A.; Tan M.L. Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
author_facet |
Tay Y.L.; Amanah A.; Adenan M.I.; Wahab H.A.; Tan M.L. |
author_sort |
Tay Y.L.; Amanah A.; Adenan M.I.; Wahab H.A.; Tan M.L. |
title |
Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
title_short |
Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
title_full |
Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
title_fullStr |
Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
title_full_unstemmed |
Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
title_sort |
Mitragynine, an euphoric compound inhibits hERG1a/1b channel current and upregulates the complexation of hERG1a-Hsp90 in HEK293-hERG1a/1b cells |
publishDate |
2019 |
container_title |
Scientific Reports |
container_volume |
9 |
container_issue |
1 |
doi_str_mv |
10.1038/s41598-019-56106-6 |
url |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077165762&doi=10.1038%2fs41598-019-56106-6&partnerID=40&md5=91025b95a9f9d5b0c5714a3795ec9692 |
description |
Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking. © 2019, The Author(s). |
publisher |
Nature Research |
issn |
20452322 |
language |
English |
format |
Article |
accesstype |
All Open Access; Gold Open Access; Green Open Access |
record_format |
scopus |
collection |
Scopus |
_version_ |
1820775466748870656 |