Evaluating aspect-based sentiment classification on Twitter hate speech using neural networks and word embedding features
In this paper, a neural network is proposed to analyse Twitter sentiment classification for the Twitter domain. The study examines and evaluates the performance of neural networks with word embedding features in Twitter sentiment classification. Four benchmark datasets were used to represent differe...
الحاوية / القاعدة: | Frontiers in Artificial Intelligence and Applications |
---|---|
المؤلف الرئيسي: | Zainuddin N.; Selamat A.; Ibrahim R. |
التنسيق: | Conference paper |
اللغة: | English |
منشور في: |
IOS Press BV
2018
|
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063377228&doi=10.3233%2f978-1-61499-900-3-723&partnerID=40&md5=06b19da482304287abdd18fe2e76983a |
مواد مشابهة
-
Hate crime on twitter: Aspect-based sentiment analysis approach
بواسطة: Zainuddin N.; Selamat A.; Ibrahim R.
منشور في: (2019) -
The Best Malaysian Airline Companies Visualization through Bilingual Twitter Sentiment Analysis: A Machine Learning Classification
بواسطة: 2-s2.0-85128946535
منشور في: (2022) -
Utilising Tiktok Features for Speech Communication
بواسطة: Tan K.H.; Rajendran A.; Philip B.; Alias J.; Saad S.M.; Mohamad Z.
منشور في: (2024) -
Convolutional Neural Network featuring VGG-16 Model for Glioma Classification
بواسطة: 2-s2.0-85139452252
منشور في: (2022) -
A Word Order Framework for Mandarin Sentiment Analysis of Social Media Text
بواسطة: Zhang J.; Maskat R.
منشور في: (2024)