A two-tier hybrid parameterization framework for effective data classification
The classification process is a decision-making task. In order to obtain a good decision, the classification process needs to be conducted by following a standard framework or approach. The selection of a good parameterization method plays an important role in executing an effective parameterization...
出版年: | Frontiers in Artificial Intelligence and Applications |
---|---|
第一著者: | Mohamad M.; Selamat A. |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
IOS Press BV
2018
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063374979&doi=10.3233%2f978-1-61499-900-3-321&partnerID=40&md5=b99cb61584af8c77494a6276dba6e3e4 |
類似資料
-
CEO Characteristics, Ownership, and Earnings Management in Indonesian Public Listed Companies with Two-Tier Boards
著者:: Warganegara, 等
出版事項: (2024) -
DATA INVESTIGATION OF PK-LQP AIRPLANE VERTICAL DEVIATION USING CLASS 1 AND TIER 1 DATASETS
著者:: Passarella R.; Nurmaini S.; Rachmatullah M.N.; Veny H.; Ubaya H.; Firdaus F.
出版事項: (2024) -
Enhancing big data feature selection using a hybrid correlation-based feature selection
著者:: Mohamad M.; Selamat A.; Krejcar O.; Crespo R.G.; Herrera-Viedma E.; Fujita H.
出版事項: (2021) -
An analysis on performance of different type classifiers in handling big data sets
著者:: Mohamad M.; Selamat A.
出版事項: (2019) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
著者:: Azmi, 等
出版事項: (2025)