Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self-Healing Scaffolds

The ability to construct self-healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self-healing s...

全面介绍

书目详细资料
发表在:Angewandte Chemie - International Edition
主要作者: Yu Z.; Liu J.; Tan C.S.Y.; Scherman O.A.; Abell C.
格式: 文件
语言:English
出版: Wiley-VCH Verlag 2018
在线阅读:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042234451&doi=10.1002%2fanie.201711522&partnerID=40&md5=b61dde603c0606f475e21d85ba11c179
实物特征
总结:The ability to construct self-healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self-healing scaffolds. The core–shell microbeads remain in an “inert” state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re-construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self-recovery in a self-healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN:14337851
DOI:10.1002/anie.201711522