Handling imbalanced dataset using SVM and k-NN approach
Data mining classification methods are affected when the data is imbalanced, that is, when one class is larger than the other class in size for the case of a two-class dependent variable. Many new methods have been developed to handle imbalanced datasets. In handling a binary classification task, Su...
出版年: | AIP Conference Proceedings |
---|---|
第一著者: | Wah Y.B.; Rahman H.A.A.; He H.; Bulgiba A. |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
American Institute of Physics Inc.
2016
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84984550446&doi=10.1063%2f1.4954536&partnerID=40&md5=1831061d4fefe8f88c4cc686c646a113 |
類似資料
-
The grading of agarwood oil quality using k-Nearest Neighbor (k-NN)
著者:: 2-s2.0-84897779629
出版事項: (2013) -
Classification of Severity Areas in Dengue Control Strategies Using k-Nearest Neighbours (kNN)
著者:: Azan, 等
出版事項: (2024) -
Water Quality Classification Using SVM And XGBoost Method
著者:: 2-s2.0-85137143735
出版事項: (2022) -
An analysis on performance of different type classifiers in handling big data sets
著者:: Mohamad M.; Selamat A.
出版事項: (2019) -
Comparison of ensemble hybrid sampling with bagging and boosting machine learning approach for imbalanced data
著者:: 2-s2.0-85142097924
出版事項: (2023)