On k-step Hamiltonian graphs

For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) i...

全面介紹

書目詳細資料
發表在:Journal of Combinatorial Mathematics and Combinatorial Computing
主要作者: Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S.
格式: Article
語言:English
出版: Charles Babbage Research Centre 2014
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766
id 2-s2.0-84906237290
spelling 2-s2.0-84906237290
Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S.
On k-step Hamiltonian graphs
2014
Journal of Combinatorial Mathematics and Combinatorial Computing
90


https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766
For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) if it has an (AL(k)-traversal and d(v1, vp) = k. In this paper, we investigate the k-step Hamiltonicity of graphs. In particular, we show that every graph is an induced subgraph of a k-step Hamiltonian graph for all k 2.
Charles Babbage Research Centre
8353026
English
Article

author Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S.
spellingShingle Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S.
On k-step Hamiltonian graphs
author_facet Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S.
author_sort Lau G.-C.; Lee S.-M.; Schaffer K.; Tong S.-M.; Lui S.
title On k-step Hamiltonian graphs
title_short On k-step Hamiltonian graphs
title_full On k-step Hamiltonian graphs
title_fullStr On k-step Hamiltonian graphs
title_full_unstemmed On k-step Hamiltonian graphs
title_sort On k-step Hamiltonian graphs
publishDate 2014
container_title Journal of Combinatorial Mathematics and Combinatorial Computing
container_volume 90
container_issue
doi_str_mv
url https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906237290&partnerID=40&md5=f50a42137bc62bf7addb2626bb190766
description For integers k 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exists a sequence of vertices (v1, v 2,. . .,vp) such that for each i = 1, 2, . . . , p - 1, the distance between vi and vi is k. We call a graph ¿-step Hamiltonian (or say it admits a k-step Hamiltonian tour) if it has an (AL(k)-traversal and d(v1, vp) = k. In this paper, we investigate the k-step Hamiltonicity of graphs. In particular, we show that every graph is an induced subgraph of a k-step Hamiltonian graph for all k 2.
publisher Charles Babbage Research Centre
issn 8353026
language English
format Article
accesstype
record_format scopus
collection Scopus
_version_ 1825722585662357504