Consensus clustering and fuzzy classification for breast cancer prognosis
Extracting usable and useful knowledge from large and complex data sets is a difficult and challenging problem. In this paper, we show how two complementary techniques have been used to tackle this problem in the context of breast cancer. Diagnosis concerns the identification of cancer within a pati...
出版年: | Proceedings - 24th European Conference on Modelling and Simulation, ECMS 2010 |
---|---|
第一著者: | Garibaldi J.M.; Soria D.; Rasmani K.A. |
フォーマット: | Conference paper |
言語: | English |
出版事項: |
European Council for Modelling and Simulation
2010
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857934629&doi=10.7148%2f2010-0015-0022&partnerID=40&md5=21c9e8e42fc925e5b4c9ac30f80a07e5 |
類似資料
-
Overlapping Granular Clustering: Application in Fuzzy Rule-Based Classification
著者:: Muda, 等
出版事項: (2024) -
Breast Cancer Classification Using Deep Learning
著者:: 2-s2.0-85167737571
出版事項: (2023) -
Designing the Hierarchical Fuzzy Systems Via FuzzyR Toolbox
著者:: Razak T.R.; Chen C.; Garibaldi J.M.; Wagner C.
出版事項: (2021) -
Deep Learning on Histopathology Images for Breast Cancer Classification: A Bibliometric Analysis
著者:: 2-s2.0-85122017681
出版事項: (2022) -
Geo-uninorm consistency control module for preference similarity network hierarchical clustering based consensus model
著者:: Kamis N.H.; Chiclana F.; Levesley J.
出版事項: (2018)