Tuberculosis bacilli detection in Ziehl-Neelsen-stained tissue using affine moment invariants and extreme learning machine
This paper describes an approach to automate the detection and classification of tuberculosis (TB) bacilli in tissue section using image processing technique and feedforward neural network trained by Extreme Learning Machine. It aims to assist pathologists in TB diagnosis and give an alternative to...
相似书籍
-
Segmentation of tuberculosis bacilli in Ziehl-Neelsen-stained tissue images based on K-mean clustering procedure
由: Osman M.K.; Mashor M.Y.; Saad Z.; Jaafar H.
出版: (2010) -
Detection of mycobacterium tuberculosis in Ziehl-Neelsen stained tissue images using Zernike moments and hybrid multilayered perceptron network
由: Osman M.K.; Mashor M.Y.; Jaafar H.
出版: (2010) -
Colour image segmentation of tuberculosis bacilli in Ziehl-Neelsen-stained tissue images using moving k-mean clustering procedure
由: Osman M.K.; Saad Z.; Mashor M.Y.; Jaafar H.
出版: (2010) -
A genetic algorithm-neural network approach for mycobacterium tuberculosis detection in Ziehl-Neelsen stained tissue slide images
由: Osman M.K.; Ahmad F.; Saad Z.; Mashor M.Y.; Jaafar H.
出版: (2010) -
Detection of tuberculosis bacilli in tissue slide images using HMLP network trained by Extreme Learning Machine
由: Osman M.K.; Mashor M.Y.; Jaafar H.
出版: (2012)