A genetic algorithm-neural network approach for mycobacterium tuberculosis detection in Ziehl-Neelsen stained tissue slide images
This paper describes a method using image processing and genetic algorithm-neural network (GA-NN) for automated Mycobacterium tuberculosis detection in tissues. The proposed method can be used to assist pathologists in tuberculosis (TB) diagnosis from tissue sections and replace the conventional man...
相似书籍
-
Detection of mycobacterium tuberculosis in Ziehl-Neelsen stained tissue images using Zernike moments and hybrid multilayered perceptron network
由: Osman M.K.; Mashor M.Y.; Jaafar H.
出版: (2010) -
Segmentation of tuberculosis bacilli in Ziehl-Neelsen-stained tissue images based on K-mean clustering procedure
由: Osman M.K.; Mashor M.Y.; Saad Z.; Jaafar H.
出版: (2010) -
Tuberculosis bacilli detection in Ziehl-Neelsen-stained tissue using affine moment invariants and extreme learning machine
由: Osman M.K.; Mashor M.Y.; Jaafar H.
出版: (2011) -
Colour image segmentation of tuberculosis bacilli in Ziehl-Neelsen-stained tissue images using moving k-mean clustering procedure
由: Osman M.K.; Saad Z.; Mashor M.Y.; Jaafar H.
出版: (2010) -
Detection of tuberculosis bacilli in tissue slide images using HMLP network trained by Extreme Learning Machine
由: Osman M.K.; Mashor M.Y.; Jaafar H.
出版: (2012)