Pressure-induced enhancement of mechanical performance in ZrC system

Superhard materials are indispensable for use in cutting and polishing, as well as for nuclear reactor construction. As a candidate for hard material, ZrC has been extensively studied but not in its pressurized phase. Through evolutionary algorithm and density functional theory, we narrowed down the...

全面介紹

書目詳細資料
發表在:International Journal of Quantum Chemistry
主要作者: 2-s2.0-85124732078
格式: Article
語言:English
出版: John Wiley and Sons Inc 2022
在線閱讀:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124732078&doi=10.1002%2fqua.26897&partnerID=40&md5=6528b67061628a43fe92bd41b1deb2b8
實物特徵
總結:Superhard materials are indispensable for use in cutting and polishing, as well as for nuclear reactor construction. As a candidate for hard material, ZrC has been extensively studied but not in its pressurized phase. Through evolutionary algorithm and density functional theory, we narrowed down the stoichiometry of Zr and C elements at various elevated pressures. The semimetal property of Zr4C4 continues to exist at high pressures but with lower electrical conductivity. Ionic and covalent bonding coexist around the pseudogap for high pressure phases. Both elastic constants and elastic moduli are found to increase steadily with surrounding pressure, connoting the superior mechanical and thermal characteristics of Zr4C4. This can be seen in the increased hardness values, higher melting temperatures, and better machinability indices for Zr4C4 as pressure rises. The predicted G/B and Poison's ratios have both agreed that Zr4C4 exhibits a transition from brittle to ductile behavior when the applied pressure goes above 85 GPa, displaying an overall improved mechanical performance. © 2022 Wiley Periodicals LLC.
ISSN:207608
DOI:10.1002/qua.26897