Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
Class imbalance is one of the most significant difficulties in modern machine learning. This is because of the inherent bias of standard classifiers toward favoring majority instances while often ignoring minority instances. Interpolation-based oversampling techniques are among the most popular solu...
发表在: | JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES |
---|---|
Main Authors: | Wang, Yujiang; Rosli, Marshima Mohd; Musa, Norzilah; Wang, Lei |
格式: | 文件 |
语言: | English |
出版: |
SPRINGERNATURE
2024
|
主题: | |
在线阅读: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001410486900001 |
相似书籍
-
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
由: Wang Y.; Rosli M.M.; Musa N.; Wang L.
出版: (2024) -
CL-SR: Boosting Imbalanced Image Classification with Contrastive Learning and Synthetic Minority Oversampling Technique Based on Rough Set Theory Integration
由: Gao X.; Jamil N.; Ramli M.I.
出版: (2024) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
由: Azmi, et al.
出版: (2025) -
Consensus clustering and fuzzy classification for breast cancer prognosis
由: Garibaldi J.M.; Soria D.; Rasmani K.A.
出版: (2010) -
Feature selection embedded cluster distribution position for characteristic analysis of multi-dimension poverty-stricken households in China
由: Liu H.; Liu Y.; Zhang R.; Liu D.; Zhang Z.
出版: (2021)