Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
Class imbalance is one of the most significant difficulties in modern machine learning. This is because of the inherent bias of standard classifiers toward favoring majority instances while often ignoring minority instances. Interpolation-based oversampling techniques are among the most popular solu...
الحاوية / القاعدة: | JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES |
---|---|
المؤلفون الرئيسيون: | Wang, Yujiang; Rosli, Marshima Mohd; Musa, Norzilah; Wang, Lei |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
SPRINGERNATURE
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001410486900001 |
مواد مشابهة
-
Improving clustering-based and adaptive position-aware interpolation oversampling for imbalanced data classification
بواسطة: Wang Y.; Rosli M.M.; Musa N.; Wang L.
منشور في: (2024) -
CL-SR: Boosting Imbalanced Image Classification with Contrastive Learning and Synthetic Minority Oversampling Technique Based on Rough Set Theory Integration
بواسطة: Gao X.; Jamil N.; Ramli M.I.
منشور في: (2024) -
Improving transformer failure classification on imbalanced DGA data using data-level techniques and machine learning
بواسطة: Azmi, وآخرون
منشور في: (2025) -
Consensus clustering and fuzzy classification for breast cancer prognosis
بواسطة: Garibaldi J.M.; Soria D.; Rasmani K.A.
منشور في: (2010) -
Feature selection embedded cluster distribution position for characteristic analysis of multi-dimension poverty-stricken households in China
بواسطة: Liu H.; Liu Y.; Zhang R.; Liu D.; Zhang Z.
منشور في: (2021)