Knowledge-Grounded Attention-Based Neural Machine Translation Model
Neural machine translation (NMT) model processes sentences in isolation and ignores additional contextual or side information beyond sentences. The input text alone often provides limited knowledge to generate contextually correct and meaningful translation. Relying solely on the input text could yi...
发表在: | APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING |
---|---|
Main Authors: | Israr, Huma; Khan, Safdar Abbas; Tahir, Muhammad Ali; Shahzad, Muhammad Khuram; Ahmad, Muneer; Zain, Jasni Mohamad |
格式: | 文件 |
语言: | English |
出版: |
WILEY
2025
|
主题: | |
在线阅读: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001397785100001 |
相似书籍
-
Language Instructors’ Beliefs and Coping Mechanisms on the Use of Machine Translation: Cautions and Concerns
由: Lew Y.L.; Kaur N.; Hamid H.A.; Hoe F.T.
出版: (2025) -
Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features
由: Khan, et al.
出版: (2024) -
A Systematic Review of Translator Translation Styles: Trends and Development from 2013 to 2023
由: Yang J.; Husin N.
出版: (2024) -
Enhancing Pretrained Multilingual Machine Translation Model with Code-Switching: A Study on Chinese, English and Malay Language
由: Liu H.; Seman N.
出版: (2025) -
LoRa-Based Ground Sensor Terminal for L-Band Satellite IoT Applications
由: Omar, et al.
出版: (2024)