On Bridge Graphs with Local Antimagic Chromatic Number 3

Let G=(V,E) be a connected graph. A bijection f:E ->{1,& mldr;,|E|} is called a local antimagic labeling if, for any two adjacent vertices x and y, f+(x)not equal f+(y), where f+(x)=& sum;e is an element of E(x)f(e), and E(x) is the set of edges incident to x. Thus, a local antimagic labe...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:MATHEMATICS
المؤلفون الرئيسيون: Shiu, Wai-Chee; Lau, Gee-Choon; Zhang, Ruixue
التنسيق: مقال
اللغة:English
منشور في: MDPI 2025
الموضوعات:
الوصول للمادة أونلاين:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001393709500001
الوصف
الملخص:Let G=(V,E) be a connected graph. A bijection f:E ->{1,& mldr;,|E|} is called a local antimagic labeling if, for any two adjacent vertices x and y, f+(x)not equal f+(y), where f+(x)=& sum;e is an element of E(x)f(e), and E(x) is the set of edges incident to x. Thus, a local antimagic labeling induces a proper vertex coloring of G, where the vertex x is assigned the color f+(x). The local antimagic chromatic number chi la(G) is the minimum number of colors taken over all colorings induced by local antimagic labelings of G. In this paper, we present some families of bridge graphs with chi la(G)=3 and give several ways to construct bridge graphs with chi la(G)=3.
تدمد:
2227-7390
DOI:10.3390/math13010016