Evaluation of Certain Definite Integrals Involving Generalized Hypergeometric Functions

In 2012, Chu investigated the generalization of classical Watson-Whipple-Dixon summation theorems in the form of analytical formulas. By employing four generalized Watson summation formulas, the objective of this paper is to evaluate a new class of several Eulerian-type integrals (single and double)...

詳細記述

書誌詳細
出版年:AXIOMS
主要な著者: Jayarama, Prathima; Lim, Dongkyu; Rathie, Arjun K.; Kilicman, Adem
フォーマット: 論文
言語:English
出版事項: MDPI 2024
主題:
オンライン・アクセス:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001384187300001
その他の書誌記述
要約:In 2012, Chu investigated the generalization of classical Watson-Whipple-Dixon summation theorems in the form of analytical formulas. By employing four generalized Watson summation formulas, the objective of this paper is to evaluate a new class of several Eulerian-type integrals (single and double) and Laplace-type integrals involving a hypergeometric function. Several interesting special cases are also given. Symmetry arises spontaneously in the hypergeometric function.
ISSN:
2075-1680
DOI:10.3390/axioms13120887