COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges inci...

Full description

Bibliographic Details
Published in:VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI
Main Authors: Lau, Gee-Choon; Shiu, Wai Chee; Nalliah, M.; Zhang, Ruixue; Premalatha, K.
Format: Article
Language:English
Published: UDMURT STATE UNIV 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001333184900004
author Lau
Gee-Choon; Shiu
Wai Chee; Nalliah
M.; Zhang
Ruixue; Premalatha, K.
spellingShingle Lau
Gee-Choon; Shiu
Wai Chee; Nalliah
M.; Zhang
Ruixue; Premalatha, K.
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
Mathematics
author_facet Lau
Gee-Choon; Shiu
Wai Chee; Nalliah
M.; Zhang
Ruixue; Premalatha, K.
author_sort Lau
spelling Lau, Gee-Choon; Shiu, Wai Chee; Nalliah, M.; Zhang, Ruixue; Premalatha, K.
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI
English
Article
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2.
UDMURT STATE UNIV
1994-9197
2076-5959
2024
34
3
10.35634/vm240305
Mathematics
gold
WOS:001333184900004
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001333184900004
title COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
title_short COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
title_full COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
title_fullStr COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
title_full_unstemmed COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
title_sort COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
container_title VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI
language English
format Article
description An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2.
publisher UDMURT STATE UNIV
issn 1994-9197
2076-5959
publishDate 2024
container_volume 34
container_issue 3
doi_str_mv 10.35634/vm240305
topic Mathematics
topic_facet Mathematics
accesstype gold
id WOS:001333184900004
url https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001333184900004
record_format wos
collection Web of Science (WoS)
_version_ 1814778545174478848