COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges inci...
Published in: | VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Published: |
UDMURT STATE UNIV
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001333184900004 |
author |
Lau Gee-Choon; Shiu Wai Chee; Nalliah M.; Zhang Ruixue; Premalatha, K. |
---|---|
spellingShingle |
Lau Gee-Choon; Shiu Wai Chee; Nalliah M.; Zhang Ruixue; Premalatha, K. COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 Mathematics |
author_facet |
Lau Gee-Choon; Shiu Wai Chee; Nalliah M.; Zhang Ruixue; Premalatha, K. |
author_sort |
Lau |
spelling |
Lau, Gee-Choon; Shiu, Wai Chee; Nalliah, M.; Zhang, Ruixue; Premalatha, K. COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI English Article An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. UDMURT STATE UNIV 1994-9197 2076-5959 2024 34 3 10.35634/vm240305 Mathematics gold WOS:001333184900004 https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001333184900004 |
title |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 |
title_short |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 |
title_full |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 |
title_fullStr |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 |
title_full_unstemmed |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 |
title_sort |
COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2 |
container_title |
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI |
language |
English |
format |
Article |
description |
An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. .. ,|E| } such that for any pair of adjacent vertices x and y, f(+)(x) not equal f(+)(y), where the induced vertex label f( +)(x) = Sigma f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we characterize s-bridge graphs with local antimagic chromatic number 2. |
publisher |
UDMURT STATE UNIV |
issn |
1994-9197 2076-5959 |
publishDate |
2024 |
container_volume |
34 |
container_issue |
3 |
doi_str_mv |
10.35634/vm240305 |
topic |
Mathematics |
topic_facet |
Mathematics |
accesstype |
gold |
id |
WOS:001333184900004 |
url |
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001333184900004 |
record_format |
wos |
collection |
Web of Science (WoS) |
_version_ |
1814778545174478848 |