Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology
This study highlights the potential of utilizing deep eutectic solvents (DESs) in the pretreatment of pineapple peel (PP) to enhance cellulose conversion. Six different DESs were initially screened to identify the most ideal solvent for PP pretreatment. Choline chloride-oxalic acid (CC-OA) was found...
Published in: | BIOMASS CONVERSION AND BIOREFINERY |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article; Early Access |
Language: | English |
Published: |
SPRINGER HEIDELBERG
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001319485100001 |
author |
Roslan Muhammad Faizuddin; Luthfi Abdullah Amru Indera; Salleh Muhammad Zulhaziman Mat; Manaf Shareena Fairuz Abdul; Nasoha Nur Zahidah; Hariz Hikmah Bajunaid; Tan Jian Ping; Abdul Peer Mohamed |
---|---|
spellingShingle |
Roslan Muhammad Faizuddin; Luthfi Abdullah Amru Indera; Salleh Muhammad Zulhaziman Mat; Manaf Shareena Fairuz Abdul; Nasoha Nur Zahidah; Hariz Hikmah Bajunaid; Tan Jian Ping; Abdul Peer Mohamed Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology Energy & Fuels; Engineering |
author_facet |
Roslan Muhammad Faizuddin; Luthfi Abdullah Amru Indera; Salleh Muhammad Zulhaziman Mat; Manaf Shareena Fairuz Abdul; Nasoha Nur Zahidah; Hariz Hikmah Bajunaid; Tan Jian Ping; Abdul Peer Mohamed |
author_sort |
Roslan |
spelling |
Roslan, Muhammad Faizuddin; Luthfi, Abdullah Amru Indera; Salleh, Muhammad Zulhaziman Mat; Manaf, Shareena Fairuz Abdul; Nasoha, Nur Zahidah; Hariz, Hikmah Bajunaid; Tan, Jian Ping; Abdul, Peer Mohamed Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology BIOMASS CONVERSION AND BIOREFINERY English Article; Early Access This study highlights the potential of utilizing deep eutectic solvents (DESs) in the pretreatment of pineapple peel (PP) to enhance cellulose conversion. Six different DESs were initially screened to identify the most ideal solvent for PP pretreatment. Choline chloride-oxalic acid (CC-OA) was found to be the most efficient, facilitating significant improvements in cellulose recovery, hemicellulose removal, and lignin degradation. Enhancement of pretreatment conditions was performed using Response Surface Methodology (RSM) with a Box-Behnken design, focusing on variables such as temperature (60-100 degrees C), time (1-3 h), and solid loading (4-6%). The optimal conditions for CC-OA pretreatment were identified at 99.65 degrees C for 62 min with a solid loading of 5.79%, achieving the highest cellulose conversion rate of 90.53%. This study highlights the potential of DES for lignocellulosic biomass processing and underscores the necessity of tailoring pretreatment conditions to specific biomass types. Further research is recommended to refine the use of DES in biomass conversion, aiming to improve efficiency and sustainability in lignocellulosic biomass processing. SPRINGER HEIDELBERG 2190-6815 2190-6823 2024 10.1007/s13399-024-06153-5 Energy & Fuels; Engineering WOS:001319485100001 https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001319485100001 |
title |
Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology |
title_short |
Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology |
title_full |
Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology |
title_fullStr |
Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology |
title_full_unstemmed |
Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology |
title_sort |
Deep eutectic solvent pretreatment for enhanced enzymatic hydrolysis of pineapple biomass via Response Surface Methodology |
container_title |
BIOMASS CONVERSION AND BIOREFINERY |
language |
English |
format |
Article; Early Access |
description |
This study highlights the potential of utilizing deep eutectic solvents (DESs) in the pretreatment of pineapple peel (PP) to enhance cellulose conversion. Six different DESs were initially screened to identify the most ideal solvent for PP pretreatment. Choline chloride-oxalic acid (CC-OA) was found to be the most efficient, facilitating significant improvements in cellulose recovery, hemicellulose removal, and lignin degradation. Enhancement of pretreatment conditions was performed using Response Surface Methodology (RSM) with a Box-Behnken design, focusing on variables such as temperature (60-100 degrees C), time (1-3 h), and solid loading (4-6%). The optimal conditions for CC-OA pretreatment were identified at 99.65 degrees C for 62 min with a solid loading of 5.79%, achieving the highest cellulose conversion rate of 90.53%. This study highlights the potential of DES for lignocellulosic biomass processing and underscores the necessity of tailoring pretreatment conditions to specific biomass types. Further research is recommended to refine the use of DES in biomass conversion, aiming to improve efficiency and sustainability in lignocellulosic biomass processing. |
publisher |
SPRINGER HEIDELBERG |
issn |
2190-6815 2190-6823 |
publishDate |
2024 |
container_volume |
|
container_issue |
|
doi_str_mv |
10.1007/s13399-024-06153-5 |
topic |
Energy & Fuels; Engineering |
topic_facet |
Energy & Fuels; Engineering |
accesstype |
|
id |
WOS:001319485100001 |
url |
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001319485100001 |
record_format |
wos |
collection |
Web of Science (WoS) |
_version_ |
1812871766617358336 |