Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions

A quaternary composite adsorbent of chitosan-polyvinyl alcohol/food grade algae/ montmorillonite clay (CS-PVA/FGA/MMT) was synthesized by hydrothermal process to be a promising adsorbent for the removal of cationic methyl violet 2B dye (MV 2B). The adsorption working variables including CS-PVA/FGA/M...

Full description

Bibliographic Details
Published in:JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS
Main Authors: Sando, Muna Sarhan; Jawad, Ali H.; Farhan, Ahlam M.
Format: Article; Early Access
Language:English
Published: SPRINGER 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001319006900010
author Sando
Muna Sarhan; Jawad
Ali H.; Farhan
Ahlam M.
spellingShingle Sando
Muna Sarhan; Jawad
Ali H.; Farhan
Ahlam M.
Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
Polymer Science
author_facet Sando
Muna Sarhan; Jawad
Ali H.; Farhan
Ahlam M.
author_sort Sando
spelling Sando, Muna Sarhan; Jawad, Ali H.; Farhan, Ahlam M.
Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS
English
Article; Early Access
A quaternary composite adsorbent of chitosan-polyvinyl alcohol/food grade algae/ montmorillonite clay (CS-PVA/FGA/MMT) was synthesized by hydrothermal process to be a promising adsorbent for the removal of cationic methyl violet 2B dye (MV 2B). The adsorption working variables including CS-PVA/FGA/MMT dosage (A: 0.02-0.1 g/100 mL), pH of the dye solution (B: 4-10) and contact duration (C: 20-480 min) were optimized using response surface methodology with Box-Behnken design (RSM-BBD). The optimal conditions of the adsorption key parameters were confirmed by desirability function test and identified to be CS-PVA/FGA/MMT dosage of 0.099 g/100 mL and solution pH of 8. The equilibrium adsorption studies revealed that the adsorption of MV 2B dye on CS-PVA/FGA/MMT surface follows the Langmuir isotherm model and the pseudo-second-order kinetic model. The highest adsorption capacity of CS-PVA/FGA/MMT towards MV 2B was determined to be 105.7 mg/g at 25 degrees C based on the Langmuir isotherm model parameters. The suggested mechanism of MV 2B adsorption by CS-PVA/FGA/MMT can be assigned to the various possible interactions such as electrostatic forces, n-pi stacking, and H-bonding. This study shows that the synthesized CS-PVA/FGA/MMT material possesses a unique structure and preferable adsorption capabilities towards cationic dye. Therefore, it offers a practical solution for removing harmful cationic dyes from contaminated wastewater.
SPRINGER
1574-1443
1574-1451
2024


10.1007/s10904-024-03205-1
Polymer Science

WOS:001319006900010
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001319006900010
title Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
title_short Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
title_full Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
title_fullStr Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
title_full_unstemmed Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
title_sort Quaternary Biocomposite of Chitosan-Polyvinyl Alcohol/Food Grade Algae/ Montmorillonite Clay for Cationic Methyl Violet 2B Dye Removal: Optimization and Desirability Functions
container_title JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS
language English
format Article; Early Access
description A quaternary composite adsorbent of chitosan-polyvinyl alcohol/food grade algae/ montmorillonite clay (CS-PVA/FGA/MMT) was synthesized by hydrothermal process to be a promising adsorbent for the removal of cationic methyl violet 2B dye (MV 2B). The adsorption working variables including CS-PVA/FGA/MMT dosage (A: 0.02-0.1 g/100 mL), pH of the dye solution (B: 4-10) and contact duration (C: 20-480 min) were optimized using response surface methodology with Box-Behnken design (RSM-BBD). The optimal conditions of the adsorption key parameters were confirmed by desirability function test and identified to be CS-PVA/FGA/MMT dosage of 0.099 g/100 mL and solution pH of 8. The equilibrium adsorption studies revealed that the adsorption of MV 2B dye on CS-PVA/FGA/MMT surface follows the Langmuir isotherm model and the pseudo-second-order kinetic model. The highest adsorption capacity of CS-PVA/FGA/MMT towards MV 2B was determined to be 105.7 mg/g at 25 degrees C based on the Langmuir isotherm model parameters. The suggested mechanism of MV 2B adsorption by CS-PVA/FGA/MMT can be assigned to the various possible interactions such as electrostatic forces, n-pi stacking, and H-bonding. This study shows that the synthesized CS-PVA/FGA/MMT material possesses a unique structure and preferable adsorption capabilities towards cationic dye. Therefore, it offers a practical solution for removing harmful cationic dyes from contaminated wastewater.
publisher SPRINGER
issn 1574-1443
1574-1451
publishDate 2024
container_volume
container_issue
doi_str_mv 10.1007/s10904-024-03205-1
topic Polymer Science
topic_facet Polymer Science
accesstype
id WOS:001319006900010
url https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001319006900010
record_format wos
collection Web of Science (WoS)
_version_ 1814778544817963008