Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice

This paper presented the design and simulation of an electrochemical equivalent circuit for a pH sensor based on an extended-gate field-effect transistor (EGFET). The pH sensor is critical to many domains, including industrial operations, environmental monitoring, and biomedical applications. To exa...

Full description

Bibliographic Details
Published in:2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS, I2CACIS 2024
Main Authors: Hashim, Shaiful Bakhtiar; Azlan, Nur Aqilah; Mahzan, Norhidayatul Hikmee; Zulkifli, Zurita; Zulkefle, Muhammad Alhadi; Herman, Sukreen Hana
Format: Proceedings Paper
Language:English
Published: IEEE 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-recordWOS:001308267400067
author Hashim
Shaiful Bakhtiar; Azlan
Nur Aqilah; Mahzan
Norhidayatul Hikmee; Zulkifli
Zurita; Zulkefle
Muhammad Alhadi; Herman
Sukreen Hana
spellingShingle Hashim
Shaiful Bakhtiar; Azlan
Nur Aqilah; Mahzan
Norhidayatul Hikmee; Zulkifli
Zurita; Zulkefle
Muhammad Alhadi; Herman
Sukreen Hana
Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
Automation & Control Systems; Computer Science
author_facet Hashim
Shaiful Bakhtiar; Azlan
Nur Aqilah; Mahzan
Norhidayatul Hikmee; Zulkifli
Zurita; Zulkefle
Muhammad Alhadi; Herman
Sukreen Hana
author_sort Hashim
spelling Hashim, Shaiful Bakhtiar; Azlan, Nur Aqilah; Mahzan, Norhidayatul Hikmee; Zulkifli, Zurita; Zulkefle, Muhammad Alhadi; Herman, Sukreen Hana
Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS, I2CACIS 2024
English
Proceedings Paper
This paper presented the design and simulation of an electrochemical equivalent circuit for a pH sensor based on an extended-gate field-effect transistor (EGFET). The pH sensor is critical to many domains, including industrial operations, environmental monitoring, and biomedical applications. To examine the equivalent circuits used in an EGFET sensor for pH measurement, specifically focusing on an electrochemical sensing response and further comprehend the EGFET sensor's sensing mechanism, multiple equivalent circuits were built using resistors and capacitors at the FET's gate to replicate the sensing electrode (SE), reference electrode (RE), and pH solution. The circuit configurations and discrete component values were then changed and simulated with the LTSpice XVII program in order to examine and understand the behavior of the sensing reaction. The circuit configurations were considered the sensor's input, and changes in the metal oxide semiconductor field effect transistor (MOSFET) drain current (ID) corresponding to the various circuit configurations and component values were recorded and examined. It was discovered that the capacitor(s) linked directly to the MOSFET gate are the primary factor that affects ID, whereas resistors did not affect ID. This observation provides empirical evidence supporting the hypothesized electrochemical events taking place on the surface of the SE, hence elucidating the significance of ionic exchange. Ions play a role in the capacitor mechanism, which is associated with charges.
IEEE
2995-2840

2024


10.1109/I2CACIS61270.2024.10649831
Automation & Control Systems; Computer Science

WOS:001308267400067
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-recordWOS:001308267400067
title Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
title_short Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
title_full Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
title_fullStr Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
title_full_unstemmed Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
title_sort Understanding the Extended-gate FET pH Sensor Sensing Mechanism through Equivalent Circuit Simulation in LTSpice
container_title 2024 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS, I2CACIS 2024
language English
format Proceedings Paper
description This paper presented the design and simulation of an electrochemical equivalent circuit for a pH sensor based on an extended-gate field-effect transistor (EGFET). The pH sensor is critical to many domains, including industrial operations, environmental monitoring, and biomedical applications. To examine the equivalent circuits used in an EGFET sensor for pH measurement, specifically focusing on an electrochemical sensing response and further comprehend the EGFET sensor's sensing mechanism, multiple equivalent circuits were built using resistors and capacitors at the FET's gate to replicate the sensing electrode (SE), reference electrode (RE), and pH solution. The circuit configurations and discrete component values were then changed and simulated with the LTSpice XVII program in order to examine and understand the behavior of the sensing reaction. The circuit configurations were considered the sensor's input, and changes in the metal oxide semiconductor field effect transistor (MOSFET) drain current (ID) corresponding to the various circuit configurations and component values were recorded and examined. It was discovered that the capacitor(s) linked directly to the MOSFET gate are the primary factor that affects ID, whereas resistors did not affect ID. This observation provides empirical evidence supporting the hypothesized electrochemical events taking place on the surface of the SE, hence elucidating the significance of ionic exchange. Ions play a role in the capacitor mechanism, which is associated with charges.
publisher IEEE
issn 2995-2840

publishDate 2024
container_volume
container_issue
doi_str_mv 10.1109/I2CACIS61270.2024.10649831
topic Automation & Control Systems; Computer Science
topic_facet Automation & Control Systems; Computer Science
accesstype
id WOS:001308267400067
url https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-recordWOS:001308267400067
record_format wos
collection Web of Science (WoS)
_version_ 1820775407675244544