Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures

This study describes the RF magnetron sputtering growth of nickel (Ni) doped zinc oxide (ZnO) thin films with nanocolumns (NCs) structures. Using a nickel seed layer, homogeneous and vertically aligned ZnO nanocolumns with a diameter of around 30 nm were successfully grown. The X-ray diffraction (XR...

Full description

Bibliographic Details
Published in:JOURNAL OF CRYSTAL GROWTH
Main Authors: Mazwan, M.; Ng, S. S.; Baharin, M. S. N. Samsol; Pakhuruddin, M. Z.; Abu Bakar, A. S.; Rahman, M. N. Abd.; Al-Zuhairi, O.; Abd Rahim, A. F.
Format: Article
Language:English
Published: ELSEVIER 2024
Subjects:
Online Access:https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001288670900001
author Mazwan
M.; Ng
S. S.; Baharin
M. S. N. Samsol; Pakhuruddin
M. Z.; Abu Bakar
A. S.; Rahman
M. N. Abd.; Al-Zuhairi
O.; Abd Rahim, A. F.
spellingShingle Mazwan
M.; Ng
S. S.; Baharin
M. S. N. Samsol; Pakhuruddin
M. Z.; Abu Bakar
A. S.; Rahman
M. N. Abd.; Al-Zuhairi
O.; Abd Rahim, A. F.
Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
Crystallography; Materials Science; Physics
author_facet Mazwan
M.; Ng
S. S.; Baharin
M. S. N. Samsol; Pakhuruddin
M. Z.; Abu Bakar
A. S.; Rahman
M. N. Abd.; Al-Zuhairi
O.; Abd Rahim, A. F.
author_sort Mazwan
spelling Mazwan, M.; Ng, S. S.; Baharin, M. S. N. Samsol; Pakhuruddin, M. Z.; Abu Bakar, A. S.; Rahman, M. N. Abd.; Al-Zuhairi, O.; Abd Rahim, A. F.
Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
JOURNAL OF CRYSTAL GROWTH
English
Article
This study describes the RF magnetron sputtering growth of nickel (Ni) doped zinc oxide (ZnO) thin films with nanocolumns (NCs) structures. Using a nickel seed layer, homogeneous and vertically aligned ZnO nanocolumns with a diameter of around 30 nm were successfully grown. The X-ray diffraction (XRD) results confirmed the incorporation of Ni atoms into the ZnO lattice, producing single crystalline structures without secondary phases. High-resolution transmission electron microscopy showed clear lattice planes with a d-spacing value of 3.243 & Aring; corresponding to the wurtzite phase of ZnO. Optimal crystalline quality was achieved by growing the films at 300 degrees C followed by thermal annealing at 300-500 degrees C in an oxygen ambient.
ELSEVIER
0022-0248
1873-5002
2024
644

10.1016/j.jcrysgro.2024.127835
Crystallography; Materials Science; Physics

WOS:001288670900001
https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001288670900001
title Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
title_short Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
title_full Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
title_fullStr Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
title_full_unstemmed Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
title_sort Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
container_title JOURNAL OF CRYSTAL GROWTH
language English
format Article
description This study describes the RF magnetron sputtering growth of nickel (Ni) doped zinc oxide (ZnO) thin films with nanocolumns (NCs) structures. Using a nickel seed layer, homogeneous and vertically aligned ZnO nanocolumns with a diameter of around 30 nm were successfully grown. The X-ray diffraction (XRD) results confirmed the incorporation of Ni atoms into the ZnO lattice, producing single crystalline structures without secondary phases. High-resolution transmission electron microscopy showed clear lattice planes with a d-spacing value of 3.243 & Aring; corresponding to the wurtzite phase of ZnO. Optimal crystalline quality was achieved by growing the films at 300 degrees C followed by thermal annealing at 300-500 degrees C in an oxygen ambient.
publisher ELSEVIER
issn 0022-0248
1873-5002
publishDate 2024
container_volume 644
container_issue
doi_str_mv 10.1016/j.jcrysgro.2024.127835
topic Crystallography; Materials Science; Physics
topic_facet Crystallography; Materials Science; Physics
accesstype
id WOS:001288670900001
url https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001288670900001
record_format wos
collection Web of Science (WoS)
_version_ 1809679297894416384