Radio frequency magnetron sputtering growth of Ni-doped ZnO thin films with nanocolumnar structures
This study describes the RF magnetron sputtering growth of nickel (Ni) doped zinc oxide (ZnO) thin films with nanocolumns (NCs) structures. Using a nickel seed layer, homogeneous and vertically aligned ZnO nanocolumns with a diameter of around 30 nm were successfully grown. The X-ray diffraction (XR...
Published in: | JOURNAL OF CRYSTAL GROWTH |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Published: |
ELSEVIER
2024
|
Subjects: | |
Online Access: | https://www-webofscience-com.uitm.idm.oclc.org/wos/woscc/full-record/WOS:001288670900001 |
Summary: | This study describes the RF magnetron sputtering growth of nickel (Ni) doped zinc oxide (ZnO) thin films with nanocolumns (NCs) structures. Using a nickel seed layer, homogeneous and vertically aligned ZnO nanocolumns with a diameter of around 30 nm were successfully grown. The X-ray diffraction (XRD) results confirmed the incorporation of Ni atoms into the ZnO lattice, producing single crystalline structures without secondary phases. High-resolution transmission electron microscopy showed clear lattice planes with a d-spacing value of 3.243 & Aring; corresponding to the wurtzite phase of ZnO. Optimal crystalline quality was achieved by growing the films at 300 degrees C followed by thermal annealing at 300-500 degrees C in an oxygen ambient. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/j.jcrysgro.2024.127835 |